Для определения равновесной ставки ренты начнем с анализа заданного уравнения спроса на землю: Q = 160 – 4R. Это уравнение показывает, как изменяется количество земли, которое хотят арендовать за определенную плату (ставка ренты).
Поскольку общая площадь земельных угодий составляет 120 га, мы можем предположить, что при равновесной ставке ренты вся эта земля будет использоваться. Таким образом, мы устанавливаем Q равным 120 га:
120 = 160 – 4R.
Решим это уравнение относительно R:
4R = 160 - 120,
4R = 40,
R = 40 / 4,
R = 10 тыс. руб. за 1 га.
Таким образом, равновесная ставка ренты составляет 10 тыс. руб. за гектар.
Теперь рассмотрим вторую часть вопроса: какова цена 1 га земли, если ставка банковского процента составляет 25%? Цена земли может быть рассчитана на основе дохода, который она приносит, и ставки банковского процента. Используя формулу капитализации дохода:
Цена = Доход / Ставка процента.
В данном случае доходом является равновесная ставка ренты, то есть 10 тыс. руб. за гектар в год, а ставка процента - 25%, или 0.25 в десятичной форме:
Цена = 10,000 руб. / 0.25 = 40,000 руб.
Таким образом, цена одного гектара земли составляет 40,000 рублей, если ставка банковского процента равна 25%.