Продуктивность труда определяется как отношение объема произведенной продукции к затраченным трудовым ресурсам. Трудоёмкость, в свою очередь, представляет собой количество труда, необходимого для производства единицы продукции. Таким образом, между трудоёмкостью и продуктивностью труда существует обратная зависимость: при снижении трудоёмкости продуктивность труда увеличивается.
Если трудоёмкость уменьшается на 5%, это означает, что для производства той же единицы продукции требуется на 5% меньше трудозатрат. Следовательно, продуктивность труда должна увеличиться. Чтобы рассчитать, на сколько именно увеличится продуктивность, можно использовать формулу:
[ \text{Продуктивность труда} = \frac{1}{\text{Трудоёмкость}} ]
При уменьшении трудоёмкости на 5%, новая трудоёмкость составит 95% от первоначальной. Это можно выразить как:
[ \text{Новая трудоёмкость} = 0.95 \times \text{Изначальная трудоёмкость} ]
Теперь, используя формулу для продуктивности, получаем:
[ \text{Новая продуктивность} = \frac{1}{0.95 \times \text{Изначальная трудоёмкость}} = \frac{1}{0.95} \times \text{Старая продуктивность} ]
Рассчитаем:
[ \frac{1}{0.95} \approx 1.0526 ]
Это означает, что продуктивность труда увеличится примерно на 5.26%. Таким образом, правильный ответ — продуктивность увеличится более чем на 5%.
Поэтому правильный вариант ответа: а) увеличится более, чем на 5%.